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An opportunistic stability strategy; simulation with real data
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Abstract

A multivariate modelling procedure is proposed in order to identify factors influencing stability, to estimate
shelf-life, to select new batches for further stability testing and to evaluate changes in new batches. A model developed
by the proposed procedure predicts the degradation rate constant as a function of storage temperature, pH,
concentration and volume. The predicted rate constants were compared with prospectively measured rate constants,
primarily from new batches stored under stress conditions, which emphasised batch differences earlier than storage
under normal conditions. Strong deviations from expected rate constants led to extended testing of the batches
concerned. The new data were used to upgrade the multivariate model. The procedure proposed led to the
formulation of an opportunistic stability strategy (OSSY). Of the 15 batches of injectable solutions, nine batches are
proposed tested by using OSSY. This led to an approximately 75% reduction in analytical measurements. Hold
samples are recommended for storage under several stability conditions for back up analysis. In general, a
multivariate stability model should be based on scientific data obtained from early studies, such as preformulation
and formulation studies to provide both a qualitative and quantitative understanding of the mechanisms involved.
© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The concepts of matrixing and bracketing for
the estimation of shelf-life and batch to batch
homogeneity at an acceptable cost have been
thoroughly discussed (Ruberg and Stegeman,
1991; Helboe, 1992; Fairweather et al., 1995). As
a result of the ICH process, guidelines have been

made to suggest possible fractional stability de-
signs which take account of the number and type
of variables to be tested. Formulation variables
such as drug concentration, container volume,
packaging type, number of product batches and
variation in raw material are typical main effects
to be determined during a stability evaluation.
However, reliable estimates of shelf-life also de-
pend on additional factors such as Arrhenius
estimations, experience in mathematic interpreta-
tion of scientific data, product homogeneity/uni-
formity, biological acceptability of product
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variations and relevant climatic zones. Analytical
precision expressed as repeatability, intermediate
precision, reproducibility and robustness will also
influence any relevant mathematical and statistical
evaluation of the data. Information on all the
factors above is usually of relevance to both regu-
latory authorities and manufacturers.

The time dependency of product change, can
typically be examined by ordinary least square
(OLS) regression analysis and variance analysis
for testing the possibility of pooling batches (AN-
COVA) to increase precision in shelf life estimates
(Ruberg and Hsu, 1991; Ruberg and Stegeman,
1991; Fairweather et al., 1995). Ruberg and Hsu
(1991) investigated the Tukey-Kramer method for
multiple comparisons of slopes and multiple com-
parison of slopes with the worst slope as an
alternative approach to ANCOVA. The Bayesian
approach by Su et al. (1994) quantified the uncer-
tainty in predicting shelf life from Arrhenius
equation as a function of stability data consisting
of various error distributions. Yoshika et al.
(1996) used Monte Carlo simulation to test the
power of ANOVA on matrixing data and single
data to estimate shelf-life. The simulation showed
that the large amount of data from a matrixing
design gave more precise shelf-life estimates. The
variation in Arrhenius plots as a function of pH
was studied by Carstensen et al. (1992). Ertel and
Carstensen (1990) improved the estimates in clas-
sical Arrhenius plotting by transforming data to
their natural logarithm.

During the early stages of product development
the knowledge about relevant future concentra-
tions (doses), container volumes, packaging, etc.,
is only tentative. Therefore stability testing tends
to be piecemeal and are undertaken throughout
the products lifetime. Often, this results in testing
one factor at a time with several batches at several
conditions.

The primary objective in this paper is to make
a scientific case for opportunistic stability strategy
(OSSY). This strategy is based on the construc-
tion of a multivariate model to estimate the rela-
tionship between temperature, product
concentration, container volume, etc., and the
degradation rate constant. Predicted rate con-
stants will be compared with rate constants gained

from minor but highly informative stress studies
of selected batches/formulations. The multivariate
model should be built from as much relevant
scientific data as possible to increase the power of
prediction.

2. Materials and methods

Stability data from 15 batches of the diagnostic
X-ray contrast agent, Visipaque (Aars and Eivin-
dvik, 1995) filled in glass bottles and stored at
elevated temperatures were used. The stability
design is shown in Table 1. The 15 batches are
referred to using letters from A to O and the
corresponding numbers refer to the storage condi-
tion described in Table 1. The active ingredient
and the finished product were produced at Lin-
desnes Plant and Oslo Plant, respectively, Nor-
way, Nycomed Imaging AS.

The most important stability indicating
parameter, inorganic iodide, was measured by
potentiometric argentometric titration (Aars and
Eivindvik, 1995). Change in inorganic iodide in
g/ml per month was estimated by univariate least
square regression and was expressed as k. The
linearity is shown by the correlation coefficient
(r2) in Table 1. The measured k was transformed
to logarithmic k, ln(k), to be used for multivariate
mathematical modelling. The variation in ln(k)
was determined as function of measured [H+],
temperature (K−1), product concentration (mg/
ml) and container volume (ml) by using data from
25 to 50°C (Table 2).

The following multivariate linear relationship
between ln(k) and the four variables were
constructed;

ln(k)=b0+bX1+…+b4X4 (1)

where
ln(k) is the logarithmic rate constant
Xn is the value of variable
b0 is a constant
bn is a regression coefficient (effect of each
variable)
Modeling was done by partial least squares

(PLS) regression in Unscrambler 6.11, Camo AS,
Trondheim, Norway.
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Table 1
The batches and the conditions for stability testing of Visipaque and the calculated degradation rate k with the corresponding correlation coefficient r2

Concentration (mg/ml) Volume (ml) pH k r2 In(k)Batch (letter) Used for:Study start Temperature.(°C)

A11 7.5001-91 0.02 0.976 −4.09Back up 4 150 50
7.50 0.14 0.956 −1.985001-91A12 15025Eq. (1)

5001-91 7.40 0.84 0.983 −0.17Eq. (1) 40 150A13
150 50 7.50 5.29 0.987 1.6701-91A14 Eq. (1) 50

7.40 0.02 0.908 −3.83504 150B11 01-91 Back up
5001-91 7.40 0.11 0.961 −2.17Eq. (1) 25 150B12
5001-91 7.40 1.19 0.991 0.17Eq. (1) 40 150B13

7.40 4.86 0.987 1.5850B14 15050Eq. (1)01-91
G11 7.2011-91 0.00 0.632 −5.70Back up 4 150 50

7.20 0.07 0.906 −2.615011-91G12 15025Backup
5011-91 7.20 0.59 0.999 −0.54Eq. (2) 40 150G13

7.20 2.29 0.996 0.83G14 11-91 Back up 50 150 50
7.50 1.24 0.940 0.2220001-91A21 15040Eq. (1)

20001-91 7.40 1.05 0.940 0.05Eq. (1) 40 150B21
20011-91 7.20 0.67 0.994 −0.40Backup 40 150G21

7.50 0.02 0.933 -3.76204 270C11 04-91 Back up
2004-91 7.50 0.27 1.000 −1.30Eq. (1) 25 270C12
2004-91 7.50 2.09 1.000 0.73Eq. (1) 40 270C13

7.45 0.03 0.571 −3.5620D11 2704Back up05-91
270 20 7.45 0.26 1.000 −1.3405-91D12 Back up 25

7.45 2.02 0.995 0.702040 270D13 05-91 Back up
2002-92 7.50 0.02 0.996 −3.79Back up 4 270H11

7.50 0.26 0.999 −1.36H12 02-92 Back up 25 270 20
7.50 2.32 0.999 0.842002-92H13 27040Back up

5004-91 7.50 2.05 1.000 0.72Back up 40 270C21
5005-91 7.45 1.95 0.998 0.67Back up 40 270D21

7.50 2.16 0.990 0.775040 270H21 02-92 Back up
10004-91 7.50 2.04 0.997 0.71Eq. (1) 40 270C31
10005-91 7.45 1.94 0.997 0.66Back up 40 270D31

7.50 2.24 0.996 0.81100H31 27040Back up02-92
20006-94 7.40 0.24 0.998 −1.43Back up 25 270K1

7.40 1.77 0.998 0.5720006-94K2 27040Back up
20006-94 7.20 0.06 0.870 −2.81Eq. (2) 25 270L1

7.20 0.96 0.998 −0.04L2 06-94 Eq. (2) 40 270 200
7.30 0.17 1.000 −1.7950003-95N1 27025Back up

50003-95 7.30 1.42 0.995 0.35Eq. (2) 40 270N2
320 20 7.50 0.03 0.870 −3.38E11 04-91 Back up 4

7.50 0.34 0.991 −1.082025Back upE12 04-91 320
2004-91 7.50 2.57 0.999 0.94Eq. (2) 40 320E13

320 20 7.40 0.02 0.465 −4.20F11 05-91 Back up 4
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Table 1 (continued)

Concentration (mg/ml) Volume (ml) pH k r2 In(k)Used for:Batch (letter) Temperature.(°C)Study start

7.40F12 0.2705-91 0.991 −1.33Back up 25 320 20
7.40 2.08 0.997 0.732005-91F13 32040Back up

2002-92 7.50 0.03 0.917 −3.59Backup 4 320I11
320 20 7.50 0.30 0.999 −1.20I12 Back up02-92 25

7.50 2.56 0.983 0.942040 320I13 02-92 Back up
5004-91 7.50 2.36 0.997 0.86Back up 40 320E21
5005-91 7.40 1.81 0.995 0.59Back up 40 320F21

7.50 2.44 0.978 0.8950I21 32040Back up02-92
7.50 2.55E31 0.97204-91 0.94Back up 40 320 100
7.40 2.15 0.994 0.7710005-91F31 32040Eq. (2)

10002-92 7.50 2.52 0.977 0.92Back up 40 320I31
7.50 0.30 0.998 −1.21J1 11-93 Back up 25 320 200
7.50 2.29 0.998 0.8320011-93J2 32040Eq. (2)

20011-93 7.50 8.01 0.998 2.08Back up 50 32033
20006-94 7.50 0.40 0.996 −0.91Back up 25 320M1

7.50 2.61 0.998 0.9620040 320M2 06-94 Eq. (2)
20006-94 7.50 10.21 0.999 2.32Back up 50 320M3
50003-95 7.40 0.25 1.000 −1.39Back up 25 320O1

7.40 2.60 0.967 0.9650003-95O2 32040Eq. (2)
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3. Results and discussion

The data from the three earliest batches were
used to develop the first model (calibration). To
be able to determine the effect of [H+], tempera-
ture, product concentration and sample volume
on ln(k) the four main effects had to be linearly
uncorrelated (unconfounded). By performing PLS
on the stability data from the first three batches
the effects of the four variables were determined
(Table 2). The degradation rate expressed as ln(k)
increased with an increase in product concentra-
tion, container volume, storage temperature and a
decrease in [H+]. However, container volume af-
fected degradation only slightly (Table 2). No
significant two-factor interactions were found.
PLS was used as it dealt with covariant and noisy
data better than OLS (Martens and Næs, 1989;
Frank and Friedman, 1993). The small variation
in measured [H+] made it preferable to use PLS
for the calibration. The accuracy and precision of
the calibration are shown in Fig. 1. From the data
obtained (Table 2), the expected worst case
batches were chosen and tested. A typical worst
case batch is a batch with low [H+] and/or high
product concentration. Measured ln(k) from real
time data after storage at 40°C was compared
with the predicted ln(k).

Two criteria were chosen for evaluating new
batches of product. The first and most important
criteria was to test whether the ln(k) at 40°C
derived from a new batch was lower than the

Fig. 1. The performance of Eq. (1) is illustrated. Standard
deviation is 0.134 and r2 is 0.995.

ln(k) predicted for the worst pH accepted (Table
3). The criterion is based on the assumption that
the degradation rate at the most is still within the
acceptable range for the product. Analytical mea-
surements should be initialised on back up sam-
ples stored at 25°C if the difference between the
measured ln(k) and the predicted ln(k) for the
worst pH is negative. If the measured k at 25°C
suggests a shorter shelf-life than the predicted
value, to an extent which takes it outside product
specification, action must be taken. Such an ob-
servation suggests that factors which have impor-
tant effects on the stability of the product are
inadequately modelled or absent in the model.

The second criterion is based on a comparison
of an observed ln(k) for a new batch against the
predicted ln(k) and its associated 95% confidence
limit (CL) (Test 2 in Table 3). Here the 95% CL is
set at twice the standard deviation on either side
of the mean. Since no systematic residual bend
was seen in the residuals (Fig. 1), such an interval
is appropriate. The 95% CL is used to identify
whether any significant change in the product
occurred rather than to estimate shelf-life. The
mechanisms behind any observed significant
change may be of importance with respect to the
clinical performance, process control or analytical
methods. The appropriate action to be taken de-
pends on the specific product concerned. Alterna-
tively, to detect major deviations, outlier testing
using a 99.7% limit equivalent to three times

Table 2
The regression coefficients () for Eq. (1) and the upgraded Eq.
(1), named Eq. (2), with weighed for ranking of the four
variables

Variable Regression coefficients (effects of variables)

Weighed (Eq. (2))Equation 2Equation 1

0.00410 0.289Concentration 0.00312
(g/ml)

0.00027 0.00041 0.047Volume (ml)
−0.337 −0.302H+ (nM) −0.0377

−0.891−14.29Temperature-1, −13.77
K-1
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standard deviations may be used. When one of
the criteria above is not met, the model needs to
be updated and improved. Causes of the marked
deviations have to be sought by for example
exploring the possibility of changes in raw materi-
als. Production process and analytical methods
may require re-examination.

To evaluate product stability according to the
procedure described, batches of product with dif-
ferent container volumes, product concentrations
and pHs were chosen and evaluated. Two batches
tested at 40°C, L (L2) and C (C31) fell outside the
95% CL (Test 2 in Table 3). Their corresponding
measured ln(k)s at 25°C (L1 and C12) were within
the predicted 95% CL. Since both batches also
met the criterion 1 when using the worst case pH
at the actual temperature (Test 1 in Table 3) the
batches were found to have acceptable stability.
The ln(k)s derived from various batches (Table 1)
were used to validate and upgrade Eq. (1) result-
ing in a new equation (Eq. (2)) as given in Table
2. As expected, the regression coefficients in the
equations were comparable. Eq. (2) was used to
predict the ln(k) for 4, 25 and 40°C for all
batches. Logarithmic rate constants were trans-
formed to k and a plot of the predicted versus
measured k is shown in Fig. 2a. The plot showed
that no reaction rates deviated strongly from
model predictions. No important factors influenc-

ing stability appeared to have been missed as
shown by the lack of trends in the residuals from
the regression lines (Fig. 1 and Fig. 2a). The slope
(1.000) and the small intercept (Fig. 2a) indicated
absence of systematic errors.

To further analyse the residuals shown in Fig.
2a, two relationships were evaluated. Firstly, the
relationship between the size of k and the differ-
ence between measured and those predicted by
Eq. (2) and expressed as % residual, was examined
(Fig. 2b). Predictions based on low k values led to
imprecise predictions.

Secondly, to assess whether the inaccuracy in
prediction was related to analytical variation or to
systematic error in the multivariate prediction
model (Eq. (2)), the residuals were plotted against
the correlation coefficients, r2, from the original
univariate linear regression (Table 1Fig. 2c). The
figure shows a relationship between the inaccurate
prediction of k and the inaccurate k calculated
from the univariate regression. The correlation
coefficient represents the ratio between sum of
squares for the univariate regression and the cor-
responding sum of squares for the error. When k
is low, this ratio and r2 decrease, i.e. the random
variation in the analytical results dominates over
the real change in the product during time (de-
creased signal to noise ratio). The results shown in
Fig. 2c suggest that the random variation in the

Table 3
Testing of ln(k) from new batches against ln(k) predicted by Eq. (1) against criterion 1 and 2

Criterion 2Criterion 1Batch Predicted ln(k) Measured ln(k)

test 1bWCa 95% CLc test 2d

1.07−0.54 −1.15,-0.61−0.88C31 1.60 −0.07
1.09 −0.03−0.04−0.34L2 −0.38,–0.071.13

L1 −1.12 1.69−2.81 −2.83,–2.29−2.56 +0.02
0.23 0.820.35 1.17N2 +0.15−0.04,0.50

0.301.00 0.73,1.27 +0.210.94 1.25E13
0.500.71 0.44,0.98 +0.210.77 1.27F31

+0.050.78,1.320.471.30J2 0.831.05
1.30 0.34 0.78,1.32 +0.18M2 1.05 0.96

0.46O2 1.420.96 +0.130.55,1.090.82

a Prediction of ln(k) for the worst case pH (7.6).
b Difference between measured ln(k) and ln(k) predicted for the worst case pH.
c 95% CL defined as predicted ln(k)9 twice standard deviation (0.27) gained from Eq. (1).
d Negative values is equal to significant deviation of measured ln(k) from predicted ln(k).



K. Dyrstad et al. / International Journal of Pharmaceutics 188 (1999) 97–104 103

Fig. 2. (a) The correlation of predicted and measured k by Eq. (2) shows that no critical failure estimations have been performed.
The correlation coefficient, r2, the slope and the intercept is 0.985, 1.000 and 0.039, respectively. (b). The % residual derived from
measured k and k predicted by multivariate model versus measured k illustrates that low k result in uncertain model prediction. (c).
The % residual of k derived from the multivariate model is plotted against the correlation coefficient, r2, from original linear
regression of each reaction rate k. The plot shows increased probability of inaccurate model predictions of k for low r2.

analytical results was the primary reason for the
observed deviations. The results suggest that
stress conditions will emphasise batch differences
more accurately than normal storage conditions.
Therefore, the stability data from 4°C (Table 1)
were not used for calibration, validation and
batch to batch testing. Instead data from higher
temperature studies are preferable. However, such
should be thoroughly evaluated before use in
predicting differences between batches at room
temperature. Higher temperatures may initiate ir-
relevant chemical/physical reactions not observed
at room temperature.

3.1. The proposed OST for e6aluating a solution
filled in glass bottles

3.1.1. Step 1. Establish model

A. Calculate the degradation rate constants, k, for
each stability indicating parameter using three
batches product according to ICH guidelines and
covering minimum three temperatures typically
within the range of 25–50°C. Evaluate the esti-
mated k using the correlation coefficient and the
significance testing from each of the univariate
linear regressions. Evaluate residual structure for
systematic errors.

B. Determine the effect of temperature and
product characteristics, such as pH, on the degra-
dation rate constant by constructing a multivari-
ate model by primarily using PLS regression or
secondary OLS regression. Use other scientific
information/data gained from degradation,
prestability and formulation studies to increase
the robustness and reliability of the model. Evalu-
ate the performance of the multivariate regression
by the correlation coefficient, intercept and slope.
A leverage test may also be adequate in order to
check if some individual results influence the re-
gression coefficients strongly.

3.1.2. Step 2. Testing a new 6ariable

A. When the effect of a new variable such as
volume is to be tested, store three batches under
normal and stressed stability conditions according
to the ICH guideline.
B. Analyse the two expected worst case batches,
one stored at 25 and 40°C and the other at 40°C
after 3 or 6 months. Test whether the stability of
the product using the new volume is different to
that with the old volume according to:
Criterion 1. Whether the measured reaction rate
constant exceeds the predicted worst case
reaction.
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Criterion 2. Whether the measured reaction con-
stant exceeds the 95% confidence limit for the
predicted degradation constant.

If there is no difference based on both criteria one
may exclude testing of volume effects or only
undertake volume reduced testing under stress
conditions.

3.1.3. Step 3. Upgrade model

A. If the volume is different, upgrade the first model
with results at 25 and 40°C for the first batch. Then
test whether the second batch meets criteria 1 and
2.
B. If the second batch meets criteria 1 and 2 then
only test the new volumes at stress temperatures in
future. If the second batch yields different, then
initiate testing of all three batches at all normal
storage conditions. Look for new factors that
influence the product stability of these batches and
take appropriate action

3.1.4. Step 4. Further e6aluation of new 6ariables
by repeating step 2 and 3

Repeat step 2 and 3 for each new variable such
as minor formulation changes, raw materials,
product concentration, packaging, etc. Generally,
more extensive testing has to be initiated for major
formulation changes.

The criteria and stress conditions to be chosen
for assessing degradation rates for new batches by
OST should be based on the intended market for
the pharmaceutical product. Typically, different
climatic zones will result in various needs depend-
ing on the type of packaging (glass, plastic, other)
and type of product (solid, solutions, emulsions,
suspensions, etc.). Products, whose stability change
markedly with small changes in storage conditions,
may not be suitable for OST. For systems that may
brake down (emulsions, suspensions, etc.) the stor-
age time to brake down may be the response of
interest instead of the reaction rate.

4. Conclusion

The classical statistical approach for batch test-
ing is often nonoptimal although the predicted
shelf-life for new batches is usually satisfactory.
This may be more related to the improved knowl-
edge about the product during its lifetime, than to

statistical prediction made on the basis of the data
from three formal batches of product.

The proposed opportunistic stability testing
scheme suggested in this paper may be an improve-
ment on current approaches. Of the 15 batches
tested extensively at all formal conditions during a
5 year period, nine batches were tested by the OST
method. Since the chemical analyses required for
testing at 25°C is more extensive than at 40°C, a
significant reduction in analytical measurements
can be achieved using OST.
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